Observations of Interstellar Carbon Compounds

نویسنده

  • E. Dartois
چکیده

Infrared absorption and emission features observed spectroscopically in our Galaxy allow to probe the composition of solid dust grains, their evolution and thus follow the cycling of matter in the Galaxy. Many observables do reveal the presence of large amounts of carbonaceous particles in space, other than the PAH-like emission lines. The carbonaceous materials observed include amorphous carbons, diamondoids showing in emission for a few specific sources, and the recently detected fullerenes. An important hydrogenated amorphous carbon component (HAC or a-C:H), traced by the 2940 cm−1 structured absorption feature is observed against Galactic background sources. Since the discovery of this feature in the early eighties (Allen 1981), the observation of a-C:H has been extended to the mid-infrared by space observatories, giving insight into additional associated features. They are also observed in external galaxies, showing the ubiquitous nature of these components. We will focus on astronomical observations of organic matter other than PAHs, amorphous carbons and associated laboratory dust analogues relevant to astrophysical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle.

Because hydrogen and nitrogen isotopic anomalies in interplanetary dust particles have been associated with carbonaceous material, the lack of similar anomalies in carbon has been a major conundrum. We report here the presence of a 13C depletion associated with a 15N enrichment in an anhydrous interplanetary dust particle. Our observations suggest that the anomalies are carried by heteroatomic ...

متن کامل

Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis?

Recent observations suggest that the abundance of carbon in the interstellar medium is only ∼ 60% of its solar value, and that other heavy elements may be depleted by a similar amount. Furthermore, more than half of the interstellar carbon is observed to be in the gas in the form of C, leaving less than ∼ 40% of the solar carbon abundance available for the dust phase. These observations have cr...

متن کامل

ISO - SWS observations of infrared absorption bands of the diffuse interstellar medium : The 6 . 2 μ m feature of aromatic compounds ?

We present ISO-SWS spectroscopy of eight strong infrared sources with large extinction through the diffuse interstellar medium. These are five late-type Wolf-Rayet stars, the blue hypergiant Cyg OB2 #12 and the Galactic Center Sources 3 and 4. The spectra show a number of absorption features that can be ascribed to interstellar dust and gas. Features at 3.0, 3.4, 4.66 and 5.95 μm were already k...

متن کامل

Cosmic carbon chemistry: from the interstellar medium to the early Earth.

Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planet...

متن کامل

nano-globules, comets and surface chemistry

Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces c...

متن کامل

The Abundance of Atomic Carbon near the Ionization Fronts

We have observed the 492 GHz ground-state line of atomic carbon in the edge-on ionization fronts in M17 and .s1~0. y.te find that, contrary to expectation, the C I emission peaks farther into the molecular cloud from t~e Iomza~IO~ fro~t than does the CO. In fact the peak C I abundance in M17 occurs more than 60 mag of visual extmctton mto the cloud from the ionization front. Calculations of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011